

POCKET BLAST GUIDE JUNE 2021

AUSTRALIA PACIFIC AND ASIA

- 1 Stop. Describe the task.
- 2 Think. List the hazards.
- 3 Identify. Assess the risk.
- 4 Plan. List the controls.
- 5 Proceed. Decide what is next.

Risk Matrix

		CONSEQUENCES						
		Minimal e.g. • First Aid • Small spill of product • Minor plant damage	Significant e.g. • Recordable accident • Medical treatment • Plant damage • Loss of containment	Catastrophic e.g. • Severe injury or death • Severe plant damage • Major loss of containment				
Q	Very Likely		А	A				
LIKELIHOC	Possible	с	В	А				
	Very Unlikely	с	с	В				

Decision

A Stop, Get Supervisor, JSERA

B Stop, JSERA

Contents

- **1** Blasthole Charge Weights
- 2 Blast Calculations
- 3 Rules of Thumb
- **4** Typical Rock Properties
- **5 Powder Factors**
- 6 Survey Offset Chart
- 7 Secondary Blasting
- 8 Blasting Nuisances
- 9 Perimeter Blasting
- 10 Underground Blasting
- **11 Conversion Factors**
- **12 Packaged Explosives**
- **13 Initiating Systems**
- **14 Electronic Blasting Systems**
- **15 Bulk Systems Products**
- **16 Accessories**

Blasthole Charge Weights Values in table are kilograms of bulk explosive per metre of blasthole

Diar	meter	Bulk explosive average in hole density (g/cm³)						
(mm)	(in)	0.30	0.45	0.60	0.80	0.85	0.90	0.95
32	1 1⁄4	0.24	0.36	0.48	0.64	0.68	0.72	0.76
38	1 1/2	0.34	0.51	0.68	0.91	0.96	1.02	1.08
45	1¾	0.48	0.72	0.95	1.27	1.35	1.43	1.51
51	2	0.61	0.92	1.23	1.63	1.74	1.84	1.94
57	2 1/4	0.77	1.15	1.53	2.04	2.17	2.30	2.42
64	21/2	0.97	1.45	1.93	2.57	2.73	2.90	3.06
76	3	1.36	2.04	2.72	3.63	3.86	4.08	4.31
89	31/2	1.87	2.80	3.73	4.98	5.29	5.60	5.91
102	4	2.45	3.68	4.90	6.54	6.95	7.35	7.76
114	41/2	3.06	4.59	6.12	8.17	8.68	9.19	9.70
127	5	3.80	5.70	7.60	10.13	10.77	11.40	12.03
130	51/8	3.98	5.97	7.96	10.62	11.28	11.95	12.61
152	6	5.44	8.17	10.89	14.52	15.42	16.33	17.24
165	6 ½	6.41	9.62	12.83	17.11	18.18	19.24	20.31
200	7 7/8	9.42	14.14	18.85	25.13	26.70	28.27	29.85
229	9	12.36	18.53	24.71	32.95	35.01	37.07	39.13
251	97⁄8	14.84	22.27	29.69	39.58	42.06	44.53	47.01
270	105/8	17.18	25.76	34.35	45.80	48.67	51.53	54.39
311	121⁄4	22.79	34.18	45.58	60.77	64.57	68.37	72.17
381	15	34.20	51.30	68.41	91.21	96.91	102.61	108.31

Table continued below

Diar	Diameter Bulk explosive average in hole density (g/cm³)						
(mm)	(in)	1.00	1.10	1.15	1.20	1.25	1.30
32	1 1⁄4	0.80	0.88	0.92	0.97	1.01	1.05
38	1 1/2	1.13	1.25	1.30	1.36	1.42	1.47
45	1¾	1.59	1.75	1.83	1.91	1.99	2.07
51	2	2.04	2.25	2.35	2.45	2.55	2.66
57	21/4	2.55	2.81	2.93	3.06	3.19	3.32
64	21/2	3.22	3.54	3.70	3.86	4.02	4.18
76	3	4.54	4.99	5.22	5.44	5.67	5.90
89	31/2	6.22	6.84	7.15	7.47	7.78	8.09
102	4	8.17	8.99	9.40	9.81	10.21	10.62
114	41/2	10.21	11.23	11.74	12.25	12.76	13.27
127	5	12.67	13.93	14.57	15.20	15.83	16.47
130	51⁄8	13.27	14.60	15.26	15.93	16.59	17.26
152	6	18.15	19.96	20.87	21.78	22.68	23.59
165	6½	21.38	23.52	24.59	25.66	26.73	27.80
200	71/8	31.42	34.56	36.13	37.70	39.27	40.84
229	9	41.19	45.31	47.37	49.42	51.48	53.54
251	91/8	49.48	54.43	56.90	59.38	61.85	64.33
270	105/8	57.26	62.98	65.84	68.71	71.57	74.43
311	121⁄4	75.96	83.56	87.36	91.16	94.96	98.75
381	15	114.01	125.41	131.11	136.81	142.51	148.21

1. Blasthole Charge Weights

2. Blast Calculations

Blast Calculations

Rules of Thumb

This table describes the most common ratios between blast design parameters for production blasting in rock. Special requirements may require a design outside these rules.

Hole Diameter	=	D
Burden	=	(20 to 40) × D
Spacing	=	$(1.1 \text{ to } 1.4) \times B$ (1.15 for even hole distribution in a staggered pattern)
Subgrade	=	(8 to 12) × D
Stemming length	=	(20 to 30) × D
Stemming particle size	=	0.1D

Initiation Timing Rules of Thumb

Timing between holes for fragmentation, 3 to 8 ms per metre of hole spacing.

Timing between rows for heave, 15 to 30 ms per metre of hole burden.

The overall burden relief rate for surface production blasting is usually in the range of 10 to 20ms/m, measured perpendicular to the angle of initiation.

3. Rules of Thumb

Golden Rules for Non-Electric Surface Delays

Movement is always towards the initiation point

When using non-electric systems, the rock will always move towards the initiation point. If the rock must go in a particular direction, select the initiation point to suit.

Always Use Reverse Echelons

Always connect surface delays on the reverse echelon.

Never use forward echelons

Connecting surface delays on the forward echelon may cause an out-of-sequence initiation.

Don't skip missing holes

This can cause an out-of-sequence initiation

3. Rules of Thumb

3. Rules of Thumb

Golden Rules for Non-Electric Surface Delays Continued.

Use dummy holes

Connect missing holes as if they were there. This will keep the planned sequence.

Use dummy holes

Always pretend the missing hole is actually there when designing and tying up.

If the control row ends, drop back and continue

Try to keep the control row connections parallel.

Classic "V"

Keep the sequence symmetrical around an imaginary line drawn back from the initiation point.

3. Rules of Thumb

Using Timing for Shaping

Select control row delays and echelon delays to change the direction of movement. Shorter control row delays promote forward movement, while shorter echelon delays stand the blast up.

Variations - Slow Down Back Row

It is common practice to add more time into the back row to provide greater relief and achieve better walls with less backbreak. This is a free and easy design choice.

Burden Relief Rate

The Burden Relief Rate is an absolute measure of the timing of the blast.

3. Rules of Thumb

Typical Rock Properties

Material	Rock Density (t/m³)	Unconfined Compressive Strength (MPa)	Young's Modulus (GPa)	Poisson's Ratio
Basalt	3.0	78 – 412	20 - 100	0.14 – 0.25
Bauxite	2.1			
Clay – dense, wet	1.7			
Coal, Anthracite	1.6	8 – 50		
Coal, Bituminous	1.4			
Diabase	2.8	150 – 330	10 - 100	0.1 – 0.25
Diorite	3.0	115 – 340	25 – 30	0.1 – 0.8
Dolerite	2.8	290 – 500		
Dolomite	3.0	15 – 118	20 - 84	0.1 – 0.2
Earth, moist	1.8			
Gneiss	2.9	78 – 240	25 - 60	0.1 – 0.19
Granite	2.7	100 – 275	25 – 70	0.15 – 0.34
Gypsum	2.8			
Haematite	4.8			
Iron Ore	4.9			
Limestone	2.6	10 – 245	10 - 80	0.1 – 0.23
Limonite	3.8			
Magnesite	3.2			
Magnetite	5.1			
Marble	2.5	50 – 200	60 - 90	0.2 – 0.35

Table continues below

Material	Rock Density (t/m³)	Unconfined Compressive Strength (MPa)	Young's Modulus (GPa)	Poisson's Ratio
Mica-Schist	2.7			
Porphyry	2.5			
Quartzite	2.5	85 - 350	26 - 100	0.15 – 0.2
Sandstone	2.4	50 - 160	5 - 86	0.1 - 0.3
Shale	2.6	20 - 150	8 - 30	0.1 - 0.3
Silica Sand	2.6			
Siltstone	2.2			
Slate	2.8	98 - 196	30 - 90	0.1 - 0.44
Talc	2.6			

Typical Powder Factors used in Production Blasts

Typical powder fac used in bench blas	tors ts	Typical powder factors used in presplit and smooth blasting			
Rock type	PF (kg/m³)	Rock type	PF (kg/m²)		
Strong	0.8 – 1.2	Strong	0.6 - 0.9		
Medium	0.6 - 0.8	Medium	0.4 - 0.5		
Soft	0.4 - 0.6	Soft	0.2 - 0.3		
Very Soft	< 0.4				

Survey Offset Chart

When using the clinometer on drill holes, remember that it has 90° as vertical so for a hole drilled at 20°, the clinometer should read 70°.

Degrees from vertical		5	7.5		7.5	
Vertical Depth	o/s	Hole Length	o/s	Hole Length	o/s	Hole Length
1.0	0.09	1.0	0.13	1.0	0.18	1.0
2.0	0.17	2.0	0.26	2.0	0.35	2.0
3.0	0.26	3.0	0.39	3.0	0.53	3.05
4.0	0.3	4.0	0.5	4.0	0.7	4.1
5.0	0.4	5.0	0.7	5.0	0.9	5.1
6.0	0.5	6.0	0.8	6.1	1.1	6.1
7.0	0.6	7.0	0.9	7.1	1.2	7.1
8.0	0.7	8.0	1.1	8.1	1.4	8.1
9.0	0.8	9.0	1.2	9.1	1.6	9.1
10.0	0.9	10.0	1.3	10.1	1.8	10.2
11.0	1.0	11.0	1.4	11.1	1.9	11.2
12.0	1.0	12.0	1.6	12.1	2.1	12.2
13.0	1.1	13.0	1.7	13.1	2.3	13.2
14.0	1.2	14.1	1.8	14.1	2.5	14.2
15.0	1.3	15.1	2.0	15.1	2.6	15.2
16.0	1.4	16.1	2.1	16.1	2.8	16.2
17.0	1.5	17.1	2.2	17.1	3.0	17.3
18.0	1.6	18.1	2.4	18.2	3.2	18.3
19.0	1.7	19.1	2.5	19.2	3.4	19.3
20.0	1.7	20.1	2.6	20.2	3.5	20.3
22.2	1.9	22.3	2.9	22.4	3.9	22.5
21.0	1.8	21.1	2.8	21.2	3.7	21.3

Degrees from vertical		12.5		15		17.5
Vertical Depth	o/s	Hole Length	o/s	Hole Length	o/s	Hole Length
1.0	0.22	1.0	0.27	1.0	0.32	1.05
2.0	0.44	2.05	0.54	2.07	0.63	2.10
3.0	0.67	3.07	0.80	3.11	0.95	3.15
4.0	0.9	4.1	1.1	4.1	1.3	4.2
5.0	1.1	5.1	1.3	5.2	1.6	5.2
6.0	1.3	6.1	1.6	6.2	1.9	6.3
7.0	1.6	7.2	1.9	7.2	2.2	7.3
8.0	1.8	8.2	2.1	8.3	2.5	8.4
9.0	2.0	9.2	2.4	9.3	2.8	9.4
10.0	2.2	10.2	2.7	10.4	3.2	10.5
11.0	2.4	11.3	2.9	11.4	3.5	11.5
12.0	2.7	12.3	3.2	12.4	3.8	12.6
13.0	2.9	13.3	3.5	13.5	4.1	13.6
14.0	3.1	14.3	3.8	14.5	4.4	14.7
15.0	3.3	15.4	4.0	15.5	4.7	15.7
16.0	3.5	16.4	4.3	16.6	5.0	16.8
17.0	3.8	17.4	4.6	17.6	5.4	17.8
18.0	4.0	18.4	4.8	18.6	5.7	18.9
19.0	4.2	19.5	5.1	19.7	6.0	19.9
20.0	4.4	20.5	5.4	20.7	6.3	21.0
22.2	4.9	22.7	5.9	23.0	7.0	23.3
21.0	4.7	21.5	5.6	21.7	6.6	22.0

6. Survey Offset Chart

Survey Offset Chart continued

Degrees from vertical		20		22.5		22.5		25
Vertical Depth	o/s	Hole Length	o/s	Hole Length	o/s	Hole Length		
1.0	0.36	1.06	0.41	1.08	0.47	1.10		
2.0	0.73	2.13	0.83	2.16	0.93	2.21		
3.0	1.09	3.19	1.24	3.25	1.40	3.31		
4.0	1.5	4.3	1.7	4.3	1.9	4.4		
5.0	1.8	5.3	2.1	5.4	2.3	5.5		
6.0	2.2	6.4	2.5	6.5	2.8	6.6		
7.0	2.5	7.4	2.9	7.6	3.3	7.7		
8.0	2.9	8.5	3.3	8.7	3.7	8.8		
9.0	3.3	9.6	3.7	9.7	4.2	9.9		
10.0	3.6	10.6	4.1	10.8	4.7	11.0		
11.0	4.0	11.7	4.6	11.9	5.1	12.1		
12.0	4.4	12.8	5.0	13.0	5.6	13.2		
13.0	4.7	13.8	5.4	14.1	6.1	14.3		
14.0	5.1	14.9	5.8	15.2	6.5	15.4		
15.0	5.5	16.0	6.2	16.2	7.0	16.6		
16.0	5.8	17.0	6.6	17.3	7.5	17.7		
17.0	6.2	18.1	7.0	18.4	7.9	18.8		
18.0	6.6	19.2	7.5	19.5	8.4	19.9		
19.0	6.9	20.2	7.9	20.6	8.9	21.0		
20.0	7.3	21.3	8.3	21.6	9.3	22.1		
22.2	8.1	23.6	9.2	24.0	10.4	24.5		

Secondary Blasting

Secondary blasting can produce flyrock and noise if not carefully controlled.

Popping

- Breaking boulders by placing an explosive charge in a blasthole drilled to the approximate centre of the boulder.
- Use only sufficient explosive to break the boulder into manageable rock.

Plaster Shooting

- Explosive is placed in firm contact with the surface of a boulder.
- · Handy when time or drilling constraints apply.
- Boulders of 1.5 m thickness are the limit for plaster shooting.
- Explosive should be laid on top of, and in intimate contact with the boulder and covered with stiff mud or clay.

Charge mass for secondary blasting

Typical powder factors for boulder are in the range of 0.05 - 0.15kg/m³. Larger boulders typically need a higher Powder Factor. The powder factor also depends on the fragmentation required, number

of blasthole and placement of the charge.

Blasting Nuisances

Airblast

Blasting generates overpressure, also called airblast. Airblast includes audible and inaudible components.

Regulatory authorities in Australia enforce limits that are are relevant to local conditions and state law. Typical limits for airblast are 115dB(L) to 120 dB(L) for human comfort. Damage is extremely unlikely below 130 dB(L). Broken windows are the most common form of damage from overpressure.

Appropriate Actions to Reduce Overpressure

- (a) Reduce the maximum instantaneous charge (MIC) or charge mass per delay to the lowest possible level.
- (b) Measure deviation of front row holes and adapt front row loading designs to match actual face burdens.
- (c) Ensure the design stemming length is achieved. Use good quality stemming. Use video to check stemming effectiveness.
- (d) Eliminate exposed detonating cord. Investigate alternative initiation methods.
- (e) Eliminate secondary blasting (instead of popping, use rock breaker or drop hammer).
- (f) Make extra efforts to eliminate the need for toe shots (e.g better preparation of the drill bench, redrill lost holes, use good loading technique).
- (g) Defer blasting if the forecast wind direction is towards the receiver, or a temperature inversion is forecast.
- (h) If possible, orient free faces away from receivers.
- If the face is oriented towards receivers, design to reduce the face acceleration and velocity.
- (j) Exercise strict control of drilling and loading, especially front row holes.
- (k) Take extra care when the ground is broken, faulted, layered or if there are cavities. Consider decking.
- Always use a wind-screen on the microphone and place the microphone close to the ground and away from sources of noise and turbulence.

Ground Vibration

$$V = K \left(\frac{R}{\sqrt{Q}}\right)^{B}$$

Where:

 $\boldsymbol{\mathsf{V}}$ is the peak particle velocity of the ground vibration in mm/s,

 ${\bf R}$ is the distance between the blast and monitoring point in metres,

Q is the charge in kg, and

K and B are constants related to site and rock properties.

K can vary from 500 to more than 5000 depending on geology.

For regular production blasting in quarries default values used in the absence of measured values are:

K = 1140 B = -1.6

Methods of controlling ground vibration

- (a) Reduce the charge mass per blasthole by reducing the blasthole diamater, charge length, explosive density, or by decking.
- (b) Reduce the charge mass per delay by changing the initiation sequence.
- (c) Fire when blasting is likely to have the least impact on neighbours. Ensure neighbours are aware of blasting times, and stick to those times.
- (d) Initiate blasts from the end closest to the receiver to reduce the risk of reinforcement.
- (e) Ensure vibration monitors are firmly coupled to the natural ground surface, away from structures.

Common ground vibration limits

- Occupied sensitive sites subject to regular or repeated blasting (e.g. houses near quarries): 5 mm/s – 10 mm/s.
- Less sensitive occupied sites such as factories and industrial buildings: 25 mm/s.
- To reduce the risk of cosmetic damage to houses and buildings: 25 mm/s – 50 mm/s.

Refer to AS2187.2-2006 Appendix J for more details.

8. Blasting Nuisances

Perimeter Blasting – Opencut

Principles of Perimeter Control

There are three main principles in wall control blasting on the surface.

- 1. Reduce the explosive energy in holes adjacent to the final wall
- 2. Reduce vibration
- 3. Provide relief to the back row

Energy

Lowering the explosive energy in blastholes can be achieved by:

- · Drilling smaller diameter holes on a smaller pattern
- Using lower energy explosive
- Air decking in the blasthole
- Specialty perimeter explosives e.g. Senatel[™] Powersplit[™]
- · Using lower density or decoupled explosives.

Relief

Conventional blasting theory says that providing relief reduces damages to final walls. This is usually achieved by using longer delays in the back rows.

Special Blasting Applications

Presplitting

- Most effective in brittle, massive rock.
- · Measure presplit powder factor in terms of explosive mass per square metre.
- The charge diameter should be 20 to 40% of the blasthole diameter when using packaged presplit explosive.
- In large diameter holes, deck charges of bulk explosive can be used but are less effective.

Mid-splitting

- Like a presplit, but fired at the same time as the accompanying production or trim blast.
- · Reduces the number of blasts in the mining schedule.
- Usually more risky and less effective than presplitting.

Cushion Blasting

- Blastholes on a reduced burden and spacing, along the back row of the blast, charged with reduced explosive per hole.
- Powder factor may be the same as or lower than, that of a standard production blast.
- · Airdecks can be used within blastholes to improve explosive distribution.

Trim Blasting

- · A separate blast of only 2-3 rows fired against a final wall
- · Sometimes with a reduced pattern and hole diameter
- · Usually fired with a free face for relief

Post Splitting

- Used to break out a single row of blastholes along the final limit or remove a small section of rock that has been damaged by backbreak from previous production blasts.
- Single row of closely spaced blastholes drilled along the final pit limit.
- Fired instantaneously or in groups of simultaneous blastholes so that the blastholes work together and create a splitting effect between the holes.
- Rarely as effective as presplitting.

Line Drilling

- · Parallel very closey spaced uncharged holes drilled on the design perimeter
- The spacing is usually less than 3 hole diameters.

Perimeter Blasting – Underground

Energy

Reduce the energy in perimeter holes by:

- Low density ANFO (Impact range)
- Low density emulsion (Subtek Control)
- Heavy detonating cord (more than 70g/m)
- Smaller diameter decoupled explosive (packaged or string loaded emulsion)
- · Speciality packaged emulsion presplit product
- Smaller diameter, closely spaced blastholes

Relief

In stopes, the last blasthole in each row should have an additional delay of 15 ms to 40 ms, depending on the initiation sequence for the rest of the blast. In development, the last hole in each row should have the next delay available.

Underground Tunnelling and Development

P = Perimeter Blasthole

Require lower energy and preferably decoupled charges to reduce damage and overbreak.

Use: Impact[™] 50 – Higher Energy Impact[™] 30 – Low Energy Subtek[™] Control – Variable Energy

F = Face Blastholes

Blow loaded ANFO is still commonly used but pumpable bulk emulsion is gaining in popularity due to its better reliability in wet conditions.

Use: Typically 45 mm or 51 mm diameter – when drilled with a Jumbo or 32mm when drilled by hand.

Subtek[™] Bulk emulsion (wet blast holes).

Senatel[™] Magnum[™] (wet blast holes).

AMEX[™] (dry blast holes).

Subtek[™] range for all blasting conditions primed with Pentex[™]D booster.

Uncharged collar approximately half the burden.

Initiation for Tunneling and Development

Non-electric long period (LP) delays initiated with a loop of detonating cord are most commonly used in development mining. Electronic detonators are used in larger faces and for vibration control. Packaged emulsion primers are commonly used in holes charged with ANFO. Cast boosters such as Pentex[™] D are recommended for holes charged with bulk emulsion.

L = Lifter Blastholes

Initiated last in the sequence and usually on simultaneous delays to lift and loosen the muckpile.

Use: Senatel[™] Magnum[™] 32 × 700 (45 mm blastholes).

Senatel[™] Powerfrag[™] 32 × 700 (45 mm blastholes).

Senatel[™] Magnum[™] 25 × 700 (32 mm blastholes).

Subtek[™] Bulk Emulsion (fully coupled holes) primed with Pentex[™]D booster. Uncharged collar approximately 3 to 5 hole diameters.

C = Cut Blastholes

Initiated first in the sequence, usually with each hole on a different delay. Typically 45 mm diameter – Jumbo.

32 mm diameter - Hand held machine.

R = Reamer Holes

Typically 102 mm or 127 mm diameter – uncharged holes to provide relief.

10. Underground Blasting

10. Underground Blasting

A basic burn cut design and LP detonator initiation sequence (by numbers)

Underground Blasting Rules of Thumb

Production Blast Parameters

Drill diameter (D)	=	16 × $\sqrt{Maximum}$ hole length (m)
Ring burden (B)	=	16 – 26 × D
Hole toe spacing (parallel hole rings)	=	1 – 1.4 × B
Hole toe spacing (radial hole rings)	=	1.4 – 2.0 × B
Stemming length	=	15 – 25 × D
Stemming rock size	=	10% × D
Void ratio calculation	=	Void Vol / Vol of rock x 100 (%)
Void ratio required for rock swell	=	30 – 50%
Max distance from blast hole to void hole in cut	=	2.5 x Void hole diameter (≤ 0.5 m)

Diameter and number of relief holes for increasing blind raise length to increase probability of success:

Hole Diameter	Raise Length (m)					
(mm)	5	10	15	20		
165	4	5	6	8		
200	3	4	5	6		

Blast Timing

Delay between holes in cut = 15 - 40 ms per m of hole length (Note: for blind long hole raise use upper limit)

Delay between rings – Best throw	=	30 – 50 ms per m of burden
Delay between holes – Best fragmentation	=	2 – 6 ms per m of spacing

10. Underground Blasting

10. Underground Blasting

Underground Troubleshooting

Excess butts in the cut area – poor tunnel advance

- · Review cut drilling to ensure holes are correct length and parallel.
- Review charging quality to ensure primers are located at the toe of the blast hole.
- Increase number or size of Void Holes in the Cut Area.
- Skip delay numbers to slow the cut initiation sequence.
- Reduce dimensions of the cut spacings < 2.5 × Void Diameter.
- · Use lower density bulk explosive in the cut for better sensitivity.

Excess butts in perimeter area (dishing) – poor tunnel advance

- · Review drilling quality to ensure holes are parallel.
- Review charging quality to ensure primers are located at the toe of the blast hole.
- Review initiation sequence to ensure adequate relief (no tight corners).
- Use next delay in corners of the blast to allow for delay scatter.
- Reduce drill burdens/spacings to increase energy at the toe.

Excess dishing of face – few butts evident / dogboxing of cut

- Reduce drill burden/spacings from outer box.
- Review geology reduce depth of burn.
- Reduce energy in Cut low density products.

Excess collar bridging, toe or lumpy floor

- Reduce uncharged collars in perimeter holes and/or the next row in.
- Review initiation timing to ensure adequate relief (no tight corners).
- Use next delay in corners of the blast to allow for delay scatter.
- Review number of lifters or explosives type for greater energy.
- Review product use for lifters i.e. incorrect product.
- · Review charging practices.

Excess damage in perimeter – overbreak

- Review initiation sequence to ensure adequate relief (no tight corners).
- Review drilling pattern to reduce burden of the perimeter row.
- Reduce the perimeter (and/or next row) explosives energy per metre.
- Use low energy ANFO based products (Impact[™] range).
- Use tailored energy bulk emulsion products (Subtek[™] Control/low density).
- In stopes, allow extra delay of 15–40 ms for the last blasthole in each row.

Leaving blast material behind - underbreak

- Review drill design for adequate breakout angle at toe (>100°) or sub drill.
- · Review drill and blast design for adequate energy.
- · Review initiation design for adequate relief to minimise confinement.
- Review primer positions and charging quality.

Very large boulders in blasted material

- Review drill pattern for excessive burdens and spacings from deviation.
- Review boulders for blastholes, indicating cut-off explosive columns.
- Review initiation design for slow timing.
- Review boulders for source outside blast area overbreak (see above).

10. Underground Blasting

Conversion Factors

This unit \rightarrow	Multiplied by	→ Converts to
	Length	
	3.280	feet (ft)
metres (m) —	39.370	inches (in)
kilometres (km)	0.621	miles (mi)
inches (in)	25.4	millimetres (mm)
	Mass	
kilogram (kg)	2.20	pound (lb)
metric tonne (t)	1.10	short tons
ounce (oz)	28.35	grams (g)
ounce (troy)	31.10	grams (g)
grains per ft	0.2126	grams per metre
	Energy	
ieule (I)	0.24	calorie
Jouie (J)	0.74	ft-lb
calorie	3.09	ft-lb
kilowatt (kW)	1.34	horsepower (hp)
	Volume	
cub. centimetres (cm ³ or cc)	0.06	cubic inches (in ³)
cub. metres (m ³)	1.31	cubic yards (yd ³)
cubic feet (ft ³)	0.03	cubic metres (m ³)
US gallon	3.79	litres (l)
Ounce (US fluid)	29.57	cubic cm (cm ³)
Converts to 🛛 ←	Divided by	← This unit

This unit 🔶	Multiplied by	-> Converts to
	Density	
lbs/ft ³	16.02	kg/m³
g/cm ³	62.43	lbs/ft ³
	Powder Factor	
kg/m³	1.69	lb/yd³
	Speed	
m/sec	3.28	ft/sec
in/sec	25.4	mm/sec
km/hour	0.62	miles/hour
	Pressure	
psi	6.89	kPa
atm	14.70	psi
har	14.50	psi
bai	100	kPa
	Temperature	
Fahrenheit –32	0.56	Celsius (°C)
Celsius +17.78	1.8	Fahrenheit (°F)
	Area	
Cm ²	0.16	in²
m²	1550.00	in ²
ft²	0.09	m²
Converts to 🗧	 Divided by 	← This unit

11. Conversion Factors

12. Packaged Explosives

Properties of Senatel[™] Special Use Explosives

Application	Explosives	Cartridge diam × length (mm)	Density (g/cm³)	Minimum VOD (km/sec)	Cartridge count	Case weight (kg)
UG Coal	Senatel™ Permitted 1000	32 × 400	1.16	4.5	66	25
Surface	Senatel [™] Powersplit [™]	26×25.2 m 32×20.1 m 32×25.2 m	1.18	6.5	1	15.3 17 21.3
Hot & Reactive*	Senatel [™] Pyrosplit [™]	32×25.2 m	1.18	6.5	1	21
Hot & Reactive*	Senatel [™] Pyromex [™]	32 x 200 32 x 700 50 x 220	1.16	4.7	135 38 50	25

* The degree of heat and reactivity is determined by Orica standard temperature and reactive ore tests.

Senatel[™] Permitted 1000

Senatel[™] Powersplit[™]

Senatel[™] Pyrosplit[™]

Senatel[™] Pyromex[™]

Packaged Emulsion Explosives Properties

Explosives	Nominal Density (g/cc)	REE Bulk Strength (% ANFO at 0.8g/cc)	REE Bulk Strength (% ANFO at 0.95 g/cc)	Minimum VOD (km/s)	Nominal Cartridge Diam/ Length (mm)	Cartridge count	Case weight (kg)
Senatel [™] Powerfrag [™]	1.21	183	139	3.4	32 × 200 32 × 700	135 38	25 25
rowennug					45 × 400	33	25
					55 × 300	30	25
					65 × 300	21	25
					80 × 400	11	25
Senatel™	1.23	201	153	3.4	25×200	215	25
Magnum™					25×700	60	25
					32 × 200	135	25
					32 × 700	38	25

Note

- Only fragmentation energy is quoted for packaged explosives because the current detonation codes cannot accurately model the effects of air decoupling on heave energy.
- 2 Fragmentation energy and heave energy are quoted for bulk explosives in the previous tables.

Senatel[™] Magnum[™]

12. Packaged Explosives

Exel[™] Non-Electric Initiation 🦓 Exel[™]

Exel[™] Non-Electric Detonators

	LP Series				MS Series	
Delay No.	J Hook Colour	Firing times (ms)	Delay Interval	Delay No.	Firing times (ms)	Delay Interval
0		25	175			N 25
1		200	200	1	25	× 25
2		400	200	2	50	- 25
3		600	200	3	75	• 25
4		1000	400	4	100	► 25
5		1400	400	5	125	• 25
6		1800	400	6	150	• 25
7		2400	600	7	175	▶ 25
8		3000	600	8	200	▶ 25
9		3500	800	9	250	► 50
10		4500	800	10	300	► 50
11		5500	900	11	350	► 50
12		6500	900	12	400	► 50
13		7500	1000	13	450	► 50
14		8500	1100	14	500	► 50
15		9500	1100	15	600	▶ 100

Exel[™] Enduradet[™] Extended Millisecond Range Non-Electric Detonators

Delay No.	Firing times (ms)	Delay Interval	Delay No.	Firing times (ms)	Delay Interval
1	25	b 95			N 12E
2	50	→ 25	19	1000	125
3	75	~ 25	20	1100	100
4	100	~ 25	21	1200	175
5	125	~ 25	22	1400	> 275
6	150	→ 25	23	1600	2/5
7	175	~ 25	24	1800	2/5
8	200	- 25	25	2000	> 325
9	250	- 50 - 50	26	2400	
10	300	- 50 - 50	27	3000	400
11	350	- 50 - 50	28	3500	400
12	400	- 50 - 50	29	4000	450
13	450	- 50 - 50	30	4500	450
14	500	> 100	31	5000	500
15	600	> 100	32	5500	
16	700	► 100	33	6000	
17	800	► 100	34	6500	► 700
18	900	F 100	35	7500	► 800
			36	8500	F 800

13. Initiating Systems

Properties of Exel[™] Detonators

Product	Detonator PETN Mass (g)	Delay Range	Tube Colour	Lead Lengths (m)
Exel [™] Millisecond (MS)	PETN 790	9 – 600 ms	Orange	3.6, 6, 7.2, 9, 12, 15,18, 24
Exel [™] Long Period (LP)	PETN 790	25 – 9600 ms	Yellow	3.6, 4.9, 6.1, 24
Exel™ Enduradet™	PETN 790	25 – 8050 ms	Red	9, 12, 15, 18, 24, 30, 36, 45,
Exel™ Bunchdet™	PETN 480	600 ms	Pink	1, 6
Exel™ Handidet	PETN 790	25 ms (surface)/ 400 ms in	Yellow	3.6, 6.1, 9,12,18, 24

Not all lengths are part of the standard offering

Exel[™] Surface Initiation Connectors

Nominal Time (ms)	Block Colour	Tube Colour
9	Green	
17	Yellow	
25	Red	
42	White	
65	Blue	Pink
100	Orange	
125	Cream	
150	Mustard	
175	Lime Green	

Exel[™] signal tube (3 mm OD) Standard length – 3.6, 4.8, 6.0, 9, 12, 15, 18

Exel[™] Connectadet[™] Detonators

13. Initiating Systems

Exel[™] Surface Intiation Connectors

Exel[™] Millisecond Connectors

Nominal Delay Time (ms)	Cleat Colour		
9	Green		
17	Yellow		
25	Red		
35	Pink		
42	White		
65	Blue		
Yellow Exel [™] signal tube (3 mm OD) Total length 80 cm			

Туре	Standard Length (m)	Detonator PETN charge (g)
Exel™ Lead in Line	60, 300	0.45 (#8 Strength)
Exel™ Connectaline™	700	N/A

Exel[™] Lead in Line

Exel[™] Connectaline[™]

Properties of Pentex[™] Boosters

Booster Type	Nominal Density (g/cm³)	VOD (km/s)	Nominal Diameter (mm)	Nominal Mass (g)	Shell Colour
Pentex™D	1.5 – 1.65	6.5	21	25	Orange
Pentex™G	1.7	7.2	31	110	Pink
Pentex™H	1.7	7.2	34	150	Green
Pentex™ ProTECT-e	1.7	7.2	51	420	Yellow
Pentex [™] PPP	1.7	7.2	55	400	Orange
Pentex [™] PowerPlus [™] 900	1.7	7.2	80	900	Red
Pentex [™] Stopeprime [™]	1.7	7.2	41	250	Yellow
Pentex [™] GL	1.6	7.2	53	432	Yellow / Green Cap

From left:

Pentex[™] H, Pentex[™] D, Pentex[™] G, Pentex[™] Stopeprime[™], Pentex[™] GL, Pentex[™] PP900, Pentex[™] PPP

13. Initiating Systems

Pentex[™] Boosters Recommended for Hole Diameter/ Explosive Combinations

Hole Diameter (mm)										
Product	38	45	64	76	89	102	115	160	200	300
ANFO				Pentex [™] Stopeprime [™]						
		F	Pentex™ (<u>3</u>						
							Pent	ex™GL	PPP	
				F	Pentex™ ŀ	4				
							Pente	x™ proT	ECT-e	
									Pentex"	" PP900
Fortis™							Pent	ex™GL/	PPP	
				F	Pentex™ I	Η				
							Pente	x™ proT	ECT-e	
									Pentex"	" PP900
Fortan™						Pentex™ G L / PPP				
				F	Pentex™ŀ	+				
							Pente	x™ proT	ECT-e	
									Pentex"	" PP900
Flexigel™							Pent	ex™GL/	PPP	
				F	Pentex™ I	-				
							Pente	x™ proT	ECT-e	
									Pentex"	" PP900
Aquacharge™						Pentex [™] G L / PPP				
				F	Pentex™ I					
							Pente	x™ proT	ECT-e	
									Pentex™	" PP900

Table continues below

			Hol	le Diame	eter (mn	ו)				
Product	38	45	64	76	89	102	115	160	200	300
Subtek™				Pe	ntex™ St	opeprim	е™			
		F	Pentex™(G						
							Pent	ex™GL	PPP	
				F	Pentex™ I	4				
							Pente	x™ proT	ECT-e	
	Pente	ex™D								
									Pentex"	" PP900
Civec™				Pe	ntex [™] St	opeprim	етм			
		F	Pentex™(G						
							Pent	ex™GL	PPP	
				F	Pentex™I	Η				
							Pente	x™ proT	ECT-e	
	Pente	ex™D								
									Pentex"	" PP900
Centra™							Pent	ex™GL	PPP	
				F	Pentex™I	+				
							Pente	x™ proT	ECT-e	
									Pentex"	" PP900
Vistis™							Pent	ex™GL	PPP	
				F	Pentex™ I	+				
							Pente	x™ proT	ECT-e	
									Pentex"	" PP900
Vistan™							Pent	ex™GL	PPP	
				F	Pentex™ I	+				
							Pente	x™ proT	ECT-e	
									Pentex"	" PP900

13. Initiating Systems

13. Initiating Systems

Cord Type	Nominal Coreload (g/m)	Length (m)	VOD (km/s)	Nominal Diameter (mm)	Maximum Hole Temp	Colour
Cordtex [™] 4.3W	4.3	250 500	6.5 – 7.0	4.0	80°C	Orange two black stripes
Cordtex™ XTL NC	10	300	5.5-6.0	4.6	80°C	Yellow
Cordtex [™] Pyrocord [™]	10	350	6.5 – 7.0	4.6	100°C	Orange

Cordtex[™] Pyrocord

Combinations of Detonators, Detonating Cords and Boosters

Receptor Donor	Lead in Line	MS & LP Detonator	End urad et"	MSC	Connectad et"	Handidet [™]	Bunchdet (Surface)	Cordtex ^{1,4} .3W	Cordtex [™] XTL NC	Pentex [™] D	Pentex [™] G	Pentex [™] H	Pentex ^{**} GL / PPP	Pentex ^{**} PP900	Pentex [™] proTECT-e	Pentex [™] Stopeprime [™]
Detonator		-	-	_	_			_								
Electric Instantaneous II	Y	Y	Y	Ν	Y	Y	Y	Y	Y	Υ	Υ	Υ	Υ	Υ	Ν	Υ
Electronic Detonator																
eDev™ll	Υ	Y	Y	Ν	Υ	Υ	Υ	Y	Y	Υ	Υ	Υ	Υ	Υ	Ν	Υ
i-kon™III	Υ	Y	Y	Ν	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ
uni tronic™600	Υ	Υ	Υ	Ν	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ
Exel™																
Lead in Line	Υ	Υ	Υ	Ν	Υ	Υ	Υ	Υ	Υ	Ν	Ν	Ν	Ν	Ν	Ν	Ν
MS & LP Detonator	Υ	Υ	Y	Ν	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Ν	Υ
Enduradet™	Υ	Y	Y	Ν	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Ν	Υ
Millisecond Connector (MSC)	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Υ	Υ	Ν	Ν	Ν	Ν	Ν	Ν	Ν
Connectadet™	Υ	Υ	Υ	Ν	Υ	Υ	Υ	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν
Handidet™	Note: Handidet [™] should be considered as Connectadet [™] or Handidet [™] MS detonator, depending on the donor/receptor combination being applied									r 1						
Bunchdet (Surface)	Υ	Υ	Y	Ν	Υ	Υ	Υ	Υ	Υ	Ν	Ν	Ν	Ν	Ν	Ν	Ν
Detonating Cord																
Cordtex™4.3W	Y	Y	Y	Υ	Υ	Ν	Υ	Υ	Υ	Ν	Ν	Ν	Υ	Υ	Ν	Ν
Cordtex [™] XTL NC	Ν	Ν	Ν	Υ	Ν	Ν	Ν	Υ	Υ	Ν	Υ	Υ	Υ	Υ	Ν	Υ

Compatibility tables should be read in conjunction with all relevant Technical Data Sheets. Disclaimers contained within these Technical Data Sheets will apply.

13. Initiating Systems

uni tronic[™]600

Application

Application	Key Benefits
Small surface mines and quarries	 Quick on-bench diagnostics via on-bench testability. Quick hook-up on blast day via new connector and duplex wire. Improved resistance to leakage via new Application Specific Integrated Circuit (ASIC) and Printed Circuit Board (PCB). Improved precision. Improved reliability via 6 Sigma target. More robust communications. New safety features in electronics. Improved packaging. Help for blaster via length encoded ID number.

Technical Properties

Type	Delay times	Wire length (m)	Downline wire
uni tronic™600	Fully programmable from 0 ms to 10,000 ms in 1 ms increments	9 15 20 25 30	Copper clad steel

Remote firing available for open cut applications.

Blast Box 310/310R

The Blast Box provides the voltage and command to fire the detonators in programmed sequence. The 310R (pictured) offers remote firing capability.

Scanner 200

The Scanner 200 scans unique ID numbers on the detonators and allows the functionality of each detonator in the pattern to be tested before the bench is cleared.

SHOTPlus[™] Blast Design Software

Orica's SHOTPlus[™] Blast Design Software gives printed blast plans, useful on the bench with the uni tronic[™] 600 system.

uni tronic™600 Detonator

Accurate and fully programmable electronic detonator.

uni tronic[™]600 Connector

Designed for on-bench efficiency, the connector carries signals between the detonator and the harness wire.

Duplex Harness Wire

Faster and easier to use, the duplex wire connects detonators with the Blast Box.

14. Electronic Blasting Systems

i-kon[™]III

CONNECT

The premium i-kon" III system includes new features and equipment that enhances productivity with faster deployment and blast set-up for both small and large scale blasting:

- Connector 6 with redesigned hinge, clip and dual plastic design locks out water, dirt and snow for faster tie-in and less leakage.
- Blaster 3000 with remote firing of up to 6 benches completes more blasts within the firing window with minimal set-up and equipment.

Reliable even in harsh mining environmental and blasting conditions, the i-kon[™]III system reduces blasts delays with:

- Improved dynamic shock resistance by approximately 30%, over existing copper alloy shell, reducing risk of misfire due to dynamic shock in challenging ground conditions.
- Bi-metallic shells protects the detonator for up to 60 days in highly corrosive conditions.
- The correct wire for the conditions including Extreme wire which performs in metal mines where hard, sharp and abrasive rock is prevalent.

PERFORM

Unlock possibilities and cutting edge blasting techniques with greater precision through the premium i-kon[™]III system:

- Blaster 3000 with remote firing of up to 6 benches completes more blasts within the firing window with minimal set-up and equipment.
- Achieve greater wall stability, increased fragmentation and reduced vibration.

Stronger and more impact resistant wire is suitable for most metal mines or large mines. Strongest and most impact resistant wire. Suitable for metal mines with very harsh conditions.

Technical Properties

Type	Delay times	Wire length (m)	Wire tensile strength
i-kon™III	Programmability 1ms steps	6, 10, 15, 20,	25 kgf/
	maximum delay 30 secs	30, 40, 60, 80	250N load
i-kon™ III Starter	Programmability 1ms steps maximum delay 30 secs	2	20kg
i-kon™III	Programmability 1ms steps	10, 15, 20, 30,	50kg
Extreme	maximum delay 30 sec	40, 60, 80	

i-kon[™]III Detonator

Accurate and fully programmable electronic detonator.

i-kon[™]III Extreme Detonator

Accurate and fully programmable electronic detonator for harsh mining conditions.

i-kon[™]III Starter Detonator

Accurate and fully programmable electronic detonator. For remote initiation of development and production blasting from a safe and controlled location underground or on the surface

14. Electronic Blasting Systems

14. Electronic Blasting Systems

Blaster 400 and Blaster 3000

The Blaster provides the voltage and command to fire the detonators in programmed sequence. Blaster 3000 features advanced functionality for safe, precise and reliable blasting.

Duplex Harness Wire

The duplex wire connects detonators with the Logger.

i-kon[™]III Connector 6

Designed for on-bench efficiency, the connector carries signals between the detonator and the harness wire.

i-kon™ Logger II

Rugged and field proven.

SHOTPlus[™] Blast Design Software

Orica's SHOTPlus[™] Blast Design Software downloads blast plans to the i-kon[™]III Loggers.

eDev[™]II Electronic Tunnel Blasting System

Application

Application	Key Benefits
Civil tunnels and vibration constrained underground development	 Better perimeter control. Improved advancement rate. Less time at face. Easier hook up. Specialty blast design software. eDev"II detonators are delivered as a single item per wire length. Faster blast programming time and faster hookup. Improved packaging. Increased maximum delay time. Fully programmable in one millisecond steps. Greater precision of delay (0.01% coefficient variation). Glove-friendly connectors. Software upgrades ensure current hardware isn't obsolete. Improved vibration control. Operational efficiency. Multiple Heading blasting. Uniform fragmentation for easier and efficient muck removal. Versatility for changing geology.

Technical Properties

Туре	Delay times	Wire length (m)
eDev™ll	0 ms to 20,000 ms	2 3 4 5 6 8

14. Electronic Blasting Systems

14. Electronic Blasting Systems

Blast Box 610 is a standalone box for firing eDev[™] blasts via a wired connection to the detonators. Blast Box 610C does not function as a standalone box. It must be integrated into an i-kon[™] CEBS system (for centralised blasting in underground mines) and can only be used with eDev[™]II detonators.

Blast Box 610/610C

The Blast Box 610 provides the voltage and command to fire the detonators in programmed sequence.

Blaster 3000

The Blaster 3000 provides the voltage and command to fire the detonators in programmed sequence and features advanced functionality for safe, precise and reliable blasting.

Scanner 260

The Scanner 260 scans unique ID numbers on the detonators and allows the functionality of each detonator in the pattern to be tested before the bench is cleared.

SHOTPlus[™] Blast Design Software

Orica's SHOTPlus[™] Blast Design Software produces printed blast plans, useful at the face with the eDev[™]II system.

eDev[™]II Detonator

Accurate and fully programmable electronic detonator.

eDev[™]II Connector

Designed for at-face efficiency, the connector carries signals between the detonator and the harness wire.

Duplex Harness Wire

Faster and easier to use, the duplex wire connects detonators with the Blast Box.

14. Electronic Blasting Systems

Bulk Systems Products

Product		Density (/cc)	RBS%*	VOD (km/s)	Rec. Min. Blasthole Diam(mm)	Rec. Max. Blasthole Depth (m)
ANFO		0.80	100	2.5–4.8	76	80
			Coal			
Fortan™ Coal	9 10 11 12 13	0.90 1.00 1.10 1.20 1.28	119 134 154 175 189	2.5- 5.8 2.5-5.8 2.5-5.8 2.8-6.1 3.1-6.3	89 89 89 102 150	80
Aquacharge⊤	[™] Coal	1.20-1.25	166-173	4.0-6.3	120	80
Fortis™	Coal Coal S Coal H	1.15–1.25	144–166 139–161 148–172	3.7–6.5	115	50
Flexigel™ Coal	50 60 70 80 90 100	+ Nominal density refer to TDS	29 40 75 92 109 128	2.5–4.1	200 200 200 100 150 150	60
Fortis™	Deep	1.25	178	4.5-6.5	250	70
		Ha	ard Rock			
Fortan™ Advantage	9 10 11 12 13	0.90 1.00 1.10 1.20 1.28	119 134 154 175 189	2.5- 5.8 2.5-5.8 2.5-5.8 2.8-6.1 3.1-6.3	89 89 89 102 150	30
Aquacharge™	[™] Advantage	1.20-1.25	162-176	4.0-6.3	120	30
Fortis™	Advantage Advantage S Advantage H	1.10–1.25	137–172 133–167 142–177	3.7–6.5	89	20
Flexigel™ Advantage	50 60 70 80 90 100	+ Nominal density refer to TDS	29 40 75 92 109 128	2.5–4.1	200 200 200 100 150	60

Table continues below								
Hot and Reactive Ground								
Fortan™ Eclipse	10 11 12 13	1.00 1.10 1.20 1.30	134 154 175 194	2.8–5.6 3.6–6.0 3.5–6.0 4.0–6.8	89 89 102 150	80		
Aquacharge™	[™] Eclipse	1.20-1.25	168–180	4.0-6.7	120	80		
Fortis™	Eclipse Eclipse S Eclipse H	1.10-1.25	140–175 135–169 144–181	3.7–6.6 3.7–6.5 4.1–6.7	90	45		
Flexigel™ Eclipse	70 80 90 100	+ Nominal density refer to TDS	74 92 108 129	2.5–4.1	200 100 150 150	60		
Fortan™ Eclipse Plus	10 11 12 13	1.00 1.10 1.20 1.30	135 155 177 198	2.8–5.6 3.2–6.1 3.5–6.5 3.8–6.9	89 89 102 150	80		
Aquacharge™ Eclipse Plus		1.20 1.25	171 183	4.0-6.5 4.0-6.7	120	80		
Fortis™	Eclipse Plus Eclipse Plus H	1.10–1.25	135–169 137–172	3.7–6.5 4.1–6.5	90	30		
Fortis™	Vulcan H	1.10–1.25 1.10–1.25	140–175 144–181	3.7–6.6 4.1–6.7	89	50		
Fortan™ Xtre	eme™	1.20	177	2.8-6.5	102	80		
Fortis™ Xtre	me™	1.20	169	4.4-6.5	76	50		
Xtreme™		0.80	100	2.5-4.8	76	80		
Vistan™ si		1.20-1.35	224–251	4.0-6.0	100	30		
Vistis™ i		1.20-1.35	216-243	4.5-6.0	90	30		
		Ch	allenging					
Aquacharge⊤	[™] Clear	1.20-1.25	169–181	4.0-6.6	120	80		
Aquacharge⊤	[™] Cleari	1.20-1.25	169–181	4.0-6.6	120	80		
Flexigel™ Clear	70 80 90 100	+ Nominal density refer to TDS	74 92 108 129	2.5–4.1	200 100 150 150	60		

Table continues overleaf

15. Bulk Systems Products

Bulk Systems Products continued

Product		Density (g/cc)	RBS%*	VOD (km/s)	Rec. Min. Blasthole Diam. (mm)	Rec. Max. Blasthole Depth (m)
Flexigel™ Cleari	70 80 90 100	+ Nominal density refer to TDS	74 92 108 129	2.5–4.1	200 100 150 150	60
Fortis™ Clea	r	1.15-1.25	147-169	3.7-6.6	115	50
Fortis™ Clea	rS	1.15-1.25	144-166	3.7-6.5	115	50
Fortis™ Clea	riS	1.15-1.25	144-166	3.7-6.5	115	50
Fortis™ Clea	ri	1.15 1.20 1.25	147 158 169	3.7–6.2 3.7–6.4 3.7–6.6	115 115 115	30 45 50
Aquacharge E	xtra	1.20-1.25	174–186	4.0-6.5	120	80
Fortan™ Extra	9 10 11 12 13	0.90 1.00 1.10 1.20 1.30	121 137 159 183 208	2.5 - 5.2 2.5–5.6 2.5–6.0 2.8–6.5 3.8–6.8	89 89 89 102 150	80
Fortan™ Extra i	10 11 12 13	1.00 1.10 1.20 1.30	135 157 178 203	2.8–5.6 3.6-6.0 3.5-6.5 4.0-6.8	89 89 102 150	80
Fortis™	Extra Extra H	1.10-1.25	151–187 151–189	4.1–6.7 4.1–6.7	64	45
Vistan™ s		1.20-1.40	227-278	4.0-6.0	100	30
Vistis™		1.20-1.40	223-273	4.5-6.0	90	30
		Und	lerground			
Subtek™ with Subtek™ Control		0.8 1.0 1.2	75 110 151	3.0–6.2	38 38 45	_
Subtek™ Cor (Decoupled C	ntrol harging)	>0.55	40		45	

Table continues below

Subtek™ Eclipse with Subtek™ Control		0.8 1.0 1.2	75 110 151	3.0-6.2	38 38 45	—
Subtek™ Control (Decoupled Charging)		>0.55	40		45	
Quarry/Construction						
Centra™	Gold Gold ES Gold GT	1.15-1.25 1.10 1.15-1.25	168 142 162-187	4.5–6.4 4.1–5.9 4.4–6.7	76 76 76	25 30 25
Centra™ Extend		1.10	158	3.5-6.05	89	25
Centra™ Eclipse		1.10-1.25	140-175	3.7-6.6	90	30
Civil Tunnelling						
Civec™		0.80-1.20	72–147	4.5-6.2	38–64	_

* Relative to ANFO @ density 0.8 g/cc.

15. Bulk Systems Products

16. Accessories

Accessories Range

Electric Exploders

Ausdet Stinger SB10 Exploder

A capacitor discharge exploder including rechargeable battery power.

The SB10 exploder is suitable for use in all mining, quarrying, construction and general blasting applications, except in underground coal mines.

Not suitable for gassy coal mines.

Ausdet Stinger SB100 Exploder

A capacitor discharge exploder including rechargeable battery power and a built-in circuit tester.

The SB100 exploder/circuit tester is a dual-function unit enclosed in a robust glass filled Nylon case. The case is dust and splash resistant. The SB100 is a 100-shot capacitor discharge exploder, suitable for use in all mining, quarrying, construction and general blasting applications, except in underground coal mines.

Not suitable for gassy coal mines.

Schaffler 808T Exploder

Hand twist dynamo capacitor discharge exploder. Built strong with fully enclosed, sealed metal casing.

The Schaffler 808T is a 100 shot capacitor discharge exploder, enclosed in a robust metal housing. It is designed particularly to meet the requirements of blasting in gassy underground coal mines.

The Schaffler 808T exploder will initiate 1 to 100 standard electrical detonators connected in series.

Beethoven Mk7 Exploder

A 100-shot hand crank dynamo capacitor discharge exploder. Fully enclosed, sealed plastic heavy-duty casing.

The Beethoven Mk7 is designed to meet the requirements of blasting in gassy underground coal mines. The Mk7 has an integral digital ohmmeter which can be used to measure the total circuit series resistance. The d/c voltage required to initiate the detonators is supplied by a hand operated generator which charges a capacitor.

The Beethoven Mk7 exploder is approved for use in gassy underground coal mines in Queensland only.

Non-Electric Starters

Shot Shell Starter Kit

A hardened stainless steel percussion starter for signal tube initiation with shot shell primers.

Shot Shell Starter kit is supplied complete with 100-shot shells and maintenance equipment in a sturdy storage bag.

Testing Equipment

ZEB/DZ3 Digital Ohmmeter

Precision circuit tester with digital read out. Resistance reading range from 0 to 1999 ohms, with 0.1 ohms resolution.

The ZEB/DZ3 digital ohmmeter is a high quality portable instrument mounted in a dust and splash resistant case. The ohmmeter is an auto-ranging type incorporating a highly visible digital readout. Screw terminals are fitted for simple attachment of the firing circuit wires.

16. Accessories

Schaffler Digiohm Ohmmeter

An approved digital circuit testing ohmmeter for underground coal mines.

The DIGIOHM may be used to test individual bridge wire detonators, chains of detonators, firing lines and whole firing circuits.

CT100 Digital Ohmmeter

General purpose circuit resistance tester with digital read out. Precise resistance reading range from 0 to 199 ohms, with 0.1 ohm resolution.

The CT100 circuit tester is a portable ohmmeter designed specifically for testing electrical firing circuits. The ohmmeter is a fixed range type incorporating a highly visible digital readout.

The complete unit is enclosed in a protective leather case complete with belt clip and neck strap. The CT100 circuit tester is suitable for use at mine, quarry, construction and general blasting sites. It is not suitable for use in gassy underground coal mines.

Shot Firing Cables

White Shot Firing Cable

Twin multi-stranded insulated copper conductors which lead from the exploder to the detonator wires.

Yellow Shot Firing Cable

Twin multi-stranded insulated, heavy duty, insulated, low resistance cable for blast initiation.

Twin Twist Connecting Wire

Twin Two single strands of copper wire, coated with PVC, for electric blasting circuits.

Suitable for extending detonator leads down blastholes, away from faces, or otherwise connecting lead wires to the firing line.

Not recommended for use as a main firing line.

Hoses

Lo-Stat[™] Special Hose

The Lo-Stat[™] Special Hose is a lightweight, robust, semiconductive, thermoplastic loading hose used for the delivery of ANFO in underground applications.

Available in 30m and 60m lengths.

Underground Powerhose MK3

Used in underground bulk emulsion systems, for optimal pumping rates and loading efficiency.

Pentex[™] Accessories

Pentex[™]D Applicator

Applicator used with the Pentex[™]D Booster. The Applicator twists into a production nozzle at the end of a static mixer or yellow Underground bulk delivery hose.

The unique design features facilitate ease of loading, retention of the unit in the hole and the secure placement of a high strength detonator.

Pentex[™]D Hosetail and Hose Nozzle

The Hosetail is designed to be screwed into the Underground Powerhose MK3 and is supplied with a *protective shroud* on the exposed thread.

The hose nozzle is screwed into the internal Hosetail thread.

On removal of the *protective shroud*, the Applicator (supplied with Pentex^MD) can be fitted to facilitate the use of Pentex^MD.

16. Accessories

Pentex[™]D Hosetail and Hose Nozzle

The 3/4" nozzle and hose tail assembly is an alternative to the Pentex D nozzle for production loading rates only and is compatible with PentexTM Stopeprime booster.

The Hosetail Production is designed to be screwed into the Powerhose MK3.

The Hose Nozzle 3/4" Production is then screwed into the internal Hosetail thread.

Ballistic Disc Accessories

Ballistic Disc 260

Ballistic Discs provide a safe and effective way of remotely clearing hang ups and upstanding drill in draw points and stopes for the underground market.

Comprises 6.9 kg of explosive cast into an aluminium lining, capped with a steel disc. The unit is initiated by a detonating cord assembly made from 20 g/m detonating cord.

Laser Aimer for Ballistic Disc 260

A machined base supports a firearm Laser Sight to provide highly accurate illumination of the ballistic disc target site.

The Laser Aimer magnetically attaches to the face of a Ballistic Disc.

Borehole Spring (75 mm)

Polyethelene plug used in conjunction with stemming and for securing explosives in blast holes. Also used for marking and keeping back fill from entering hole.

Retention Devices

Borehole Plug Brush

Borehole retention device for use in upholes loaded with bulk emulsion (150 mm \times 225 mm).

Auto Prime Shell

Plastic shell used to secure Pentex[™]G primers in up-holes of 51 mm to 89mm diameter. Ideal application for use in production up-holes.

Spiders for Pentex[™] Stopeprime[™]

Pentex[™] Stopeprime[™] Spider

Plastic spider used to secure Stopeprimer primers in upholes. Ideal for use in perimeter and lifter boreholes, wet development headings, stope hanging walls and pre-split applications where floating and rifling can occur.

16. Accessories

Detonating Cord Cutters

Detonating Cord Cutters

Heavy duty, single action cutter featuring a long stainless steel blade with synthetic anvil, avoiding hazardous shearing action.

J-Style Easy Cord Cutter

Drag knife, for slicing easily through Cordtex[™] Detonating cord. No moving parts, and small enough to fit on a miner's belt.

Sold in packets of 10, safe and economical method of cutting cord.

ACCESS THE POCKET BLAST GUIDE APP

IMPROVED NAVIGATION. BETTER DESIGN. EASIER ACCESS TO BLASTING INFORMATION.

Our Pocket Blast Guide continues to provide users with reliable content and the ability to perform complex blasting calculations.

To register, go to orica.com/mobile

SAFETY IS OUR PRIORITY. ALWAYS.

The most important thing is that we all return home, safely.

We care and take accountability for everyone's safety and wellbeing, including our own.

We recognise the risks we face in our work and follow all safety controls.

We speak up when we see hazards or causes of potential harm.

Emergency Telephone Numbers Within Australia: **1800 033 111** Outside Australia: **61 3 9663 2130**

© 2020 Orica Group. All rights reserved. All information contained in this document is provided for informational purposes only and is subject to change without notice. Since the Orica Group cannot anticipate or control the conditions under which this information and its products may be used, each user should review the information in the specific context of the intended application. To the maximum extent permitted by law, the Orica Group specifically disclaims all warranties express or implied in law, including accuracy, non infringement, and implied warranties of merchantability or fitness for a particular purpose. The Orica Group specifically disclaims, and will not be responsible for, any liability or damages resulting from the use or reliance upon the information in this document.

The word Orica and the Ring device are trademarks of the Orica Group.

orica.com